Nutrient, Organic Matter and Shading Alter Planktonic Structure and Density of a Tropical Lake

The structure and density of plankton communities greatly influence carbon and nutrient cycling as well as the environmental status of lake ecosystems. This community can respond to a range of environmental drivers, including those influenced by human perturbations on local and regional scales, caus...

Full description

Saved in:
Bibliographic Details
Main Authors: Marina Isabela Bessa da Silva, Luciana Pena Mello Brandão, Ludmila Silva Brighenti, Peter A. U. Staehr, Cristiane Freitas de Azevedo Barros, Francisco Antônio Rodrigues Barbosa, José Fernandes Bezerra-Neto
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Limnological Review
Subjects:
Online Access:https://www.mdpi.com/2300-7575/25/2/16
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structure and density of plankton communities greatly influence carbon and nutrient cycling as well as the environmental status of lake ecosystems. This community can respond to a range of environmental drivers, including those influenced by human perturbations on local and regional scales, causing abrupt changes and imbalances. While the implications of climate and land-use changes are evident for a range of tropical lake conditions, their impacts on planktonic population dynamics are less understood. In this study, we aimed to investigate how distinctive levels of nutrients, allochthonous organic matter (OM), and sunlight availability change phytoplankton and zooplankton density and structure in a natural tropical lake. Using an in situ mesocosm facility, we manipulated the addition of nutrients and OM, in addition to sunlight availability and a combination of these treatments. We monitored limnological parameters, plankton count, and identification for 12 days. The mesocosms included eight different combinations in a 2 × 2 × 2 factorial design, each with two replicates. Inorganic nutrient addition reduced phytoplankton species richness, favoring the dominance of opportunistic species such as <i>Chlorella</i> sp. at much higher densities. Organic matter also increased light attenuation and caused the substitution of species and changes in dominance from <i>Pseudanabaena catenata</i> to <i>Aphanocapsa elachista</i>. On the other hand, physical shading had less influence on these communities, presenting densities similar to those found in the control mesocosms. Zooplankton presented a group dominance substitution in all mesocosms from copepod to rotifer species, and copepod growth seemed to be negatively affected by <i>Chlorella</i> sp. density increase. Furthermore, this community was associated with the light attenuation indices and bacterioplankton. These results indicate that tropical planktonic responses to environmental changes can effectively occur in just a few days, and the responses can be quite different depending on the nutritional source added. The punctual nutrient addition was sufficient to provide changes in this community, evidencing the strength of anthropic events associated with strong nutrient input. Understanding tropical plankton dynamics in response to environmental changes, such as those simulated in this work, is important for understanding the effects of climate and anthropogenic changes on tropical lake functioning. This knowledge can strengthen measures for the conservation of freshwater systems by allowing predictions of plankton community changes and the possible consequences for the aquatic food chain and water quality.
ISSN:2300-7575