Explainable Artificial Intelligence (XAI) for Flood Susceptibility Assessment in Seoul: Leveraging Evolutionary and Bayesian AutoML Optimization
This study aims to enhance the accuracy and interpretability of flood susceptibility mapping (FSM) in Seoul, South Korea, by integrating automated machine learning (AutoML) with explainable artificial intelligence (XAI) techniques. Ten topographic and environmental conditioning factors were selected...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/13/2244 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aims to enhance the accuracy and interpretability of flood susceptibility mapping (FSM) in Seoul, South Korea, by integrating automated machine learning (AutoML) with explainable artificial intelligence (XAI) techniques. Ten topographic and environmental conditioning factors were selected as model inputs. We first employed the Tree-based Pipeline Optimization Tool (TPOT), an evolutionary AutoML algorithm, to construct baseline ensemble models using Gradient Boosting (GB), Random Forest (RF), and XGBoost (XGB). These models were further fine-tuned using Bayesian optimization via Optuna. To interpret the model outcomes, SHAP (SHapley Additive exPlanations) was applied to analyze both the global and local contributions of each factor. The SHAP analysis revealed that lower elevation, slope, and stream distance, as well as higher stream density and built-up areas, were the most influential factors contributing to flood susceptibility. Moreover, interactions between these factors, such as built-up areas located on gentle slopes near streams, further intensified flood risk. The susceptibility maps were reclassified into five categories (very low to very high), and the GB model identified that approximately 15.047% of the study area falls under very-high-flood-risk zones. Among the models, the GB classifier achieved the highest performance, followed by XGB and RF. The proposed framework, which integrates TPOT, Optuna, and SHAP within an XAI pipeline, not only improves predictive capability but also offers transparent insights into feature behavior and model logic. These findings support more robust and interpretable flood risk assessments for effective disaster management in urban areas. |
---|---|
ISSN: | 2072-4292 |