Dynamic Coal Flow-Based Energy Consumption Optimization of Scraper Conveyor

Fully mechanized mining involves high energy consumption, particularly during cutting and transportation. Scraper conveyors, crucial for coal transport, face energy efficiency challenges due to the lack of accurate dynamic coal flow models, which restricts precise energy estimation and optimization....

Full description

Saved in:
Bibliographic Details
Main Authors: Qi Lu, Yonghao Chen, Xiangang Cao, Tao Xie, Qinghua Mao, Jiewu Leng
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7366
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fully mechanized mining involves high energy consumption, particularly during cutting and transportation. Scraper conveyors, crucial for coal transport, face energy efficiency challenges due to the lack of accurate dynamic coal flow models, which restricts precise energy estimation and optimization. This study constructs dynamic coal flow and scraper conveyor energy efficiency models to analyze the impact of multiple variables on energy consumption and lump coal rate. A dynamic coal flow model is developed through theoretical derivation and EDEM simulations, validated for parameter settings, boundary conditions, and numerical methods. The multi-objective optimization model for energy consumption is solved using the NSGA-II-ARSBX algorithm, yielding a 33.7% reduction in energy consumption, while the lump coal area is reduced by 27.7%, indicating a trade-off between energy efficiency and coal fragmentation. The analysis shows that increasing traction speed while decreasing scraper chain and drum speeds effectively lowers energy consumption. Conversely, simultaneously increasing both chain and drum speeds helps to maintain lump coal size. The final optimization scheme demonstrates this balance—achieving improved energy efficiency at the cost of increased coal fragmentation. Additional results reveal that decreasing traction speed while increasing chain and drum speeds results in higher energy consumption, while increasing traction speed and reducing chain/drum speeds minimizes energy use but may negatively affect lump coal integrity.
ISSN:2076-3417