Influence Maximization in Social Networks Using Improved Genetic Algorithm
Influence maximization is one of the important problems in network science, data mining, and social media analysis. It focuses on identifying the most influential individuals (or nodes) in a social network to maximize the spread of information, ideas, or behaviors. Most existing studies have used ce...
Saved in:
Main Authors: | Ali Chodari Khosroshahi, Saeid Taghavi Afshord, Bagher Zarei, Bahman Arasteh |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/11080389/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Application of micro–influencer engagement in digital marketing channels
by: V. I. Kolmogorova, et al.
Published: (2024-12-01) -
Dynamic Adaptive Parametric Social Network Analysis Using Reinforcement Learning: A Case Study in Topic-Aware Influence Maximization
by: Mohammad Hossein Ahmadikia, et al.
Published: (2025-01-01) -
Las redes sociales y los influencers como parte de la estrategia de ventas: un análisis bibliométrico
by: Carlos Antonio Cuervo-Sánchez
Published: (2025-07-01) -
Interactive Viral Marketing Through Big Data Analytics, Influencer Networks, AI Integration, and Ethical Dimensions
by: Leonidas Theodorakopoulos, et al.
Published: (2025-05-01) -
S-maximal Submodules
by: Baghdad Science Journal
Published: (2015-03-01)