Cancer cell membrane cloaking nanoparticles for targeted co-delivery of doxorubicin and PD-L1 siRNA

Nanoparticles coated with cell membranes have been garnering growing attention due to their homologous binding capability of membrane molecules and consequent self-recognition by their source cells. In the present study, we report on the construction of doxorubicin and PD-L1 siRNA-loaded PLGA nanopa...

Full description

Saved in:
Bibliographic Details
Main Authors: Mushi Chen, Ming Chen, Jiantai He
Format: Article
Language:English
Published: Taylor & Francis Group 2019-12-01
Series:Artificial Cells, Nanomedicine, and Biotechnology
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/21691401.2019.1608219
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoparticles coated with cell membranes have been garnering growing attention due to their homologous binding capability of membrane molecules and consequent self-recognition by their source cells. In the present study, we report on the construction of doxorubicin and PD-L1 siRNA-loaded PLGA nanoparticles and their biological functionalization by cancer cell-derived membrane cloaking. The resulting cancer cell membrane-coated nanoparticles (CCMNPs) presented a core-shell nanostructure with highly specific self-recognition affinity to the homotypic cells, which can be attributed to the transference of cell adhesion molecules with homotypic binding properties. These findings facilitate the application of this bioinspired strategy for effective delivery of siRNA and precise tumour therapy.
ISSN:2169-1401
2169-141X