Forbidden sparse intersections
Let n be a positive integer, let $0<p\leqslant p'\leqslant \frac 12$ , and let $\ell \leqslant pn$ be a nonnegative integer. We prove that if $\mathcal {F},\mathcal {G}\subseteq \{0,1\}^n$ are two families whose cross intersections forbid $\ell $ —that is, they sati...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2025-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509425100674/type/journal_article |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let n be a positive integer, let
$0<p\leqslant p'\leqslant \frac 12$
, and let
$\ell \leqslant pn$
be a nonnegative integer. We prove that if
$\mathcal {F},\mathcal {G}\subseteq \{0,1\}^n$
are two families whose cross intersections forbid
$\ell $
—that is, they satisfy
$|A\cap B|\neq \ell $
for every
$A\in \mathcal {F}$
and every
$B\in \mathcal {G}$
– then, setting
$t:= \min \{\ell ,pn-\ell \}$
, we have the subgaussian bound
$$\begin{align*}\mu_p(\mathcal{F})\, \mu_{p'}(\mathcal{G}) \leqslant 2\exp\Big( - \frac{t^2}{58^2\,pn}\Big), \end{align*}$$
|
---|---|
ISSN: | 2050-5094 |