Enhanced Light Emission of Er(Yb/Y) Silicates at the Wavelength of 1.53  $\mu$m With Au Plasmonic Arrays

In this paper, we present a novel method to increase photoluminescence (PL) efficiency at the wavelength of 1.53&#x00A0;<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m (<inline-formula> <tex-math notation="LaTeX"&...

Full description

Saved in:
Bibliographic Details
Main Authors: Gongli Xiao, Jianqing Li, Hongyan Yang
Format: Article
Language:English
Published: IEEE 2017-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/7807261/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present a novel method to increase photoluminescence (PL) efficiency at the wavelength of 1.53&#x00A0;<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m (<inline-formula> <tex-math notation="LaTeX">$\lambda =$</tex-math></inline-formula> 1.53&#x00A0;<inline-formula><tex-math notation="LaTeX"> $\mu$</tex-math></inline-formula>m) by depositing Au plasmonic arrays on <inline-formula><tex-math notation="LaTeX"> $\text{SiO}_\text{2}\text{/Er}\text{(Yb/Y)}$</tex-math></inline-formula> silicates. Theoretical analysis reveals that the PL enhancement is caused by the resonant coupling of surface plasmon polaritons from photoemission in <inline-formula><tex-math notation="LaTeX">$\text{Er(Yb/Y)}$</tex-math></inline-formula> and the electric field of incident light at the <inline-formula><tex-math notation="LaTeX">$\text{Au/SiO}_{2}$</tex-math></inline-formula> interface. Numerical investigations show that by using the finite-difference-time-domain (FDTD) method, the change of the peak shape and bandwidth of transmission spectra at <inline-formula><tex-math notation="LaTeX">$\lambda =$ </tex-math></inline-formula> 1.53&#x00A0;<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m depends strongly on the arrays period (<inline-formula><tex-math notation="LaTeX">${a_0}$</tex-math></inline-formula>) and <inline-formula><tex-math notation="LaTeX">$\text{Au}$</tex-math></inline-formula> film thickness (<inline-formula> <tex-math notation="LaTeX">${t_{\text{Au}}}$</tex-math></inline-formula>). It is demonstrated that, by experiments, the plasmonic arrays of <inline-formula><tex-math notation="LaTeX">${a_0} =$</tex-math></inline-formula> 1082&#x00A0;nm and <inline-formula><tex-math notation="LaTeX">${t_{\text{Au}}} =$</tex-math></inline-formula> 50&#x00A0;nm can enhance the PL intensity two times, compared with a flat Au film, which can serve as an excellent guideline for designing and optimizing a highly efficient solid-state light source.
ISSN:1943-0655