Using Respiratory Gas Analyzers to Determine Resting Metabolic Rate in Adults: A Systematic Review of Validity Studies

Background: Correct assessment of resting metabolic rate (RMR) is fundamental for estimating total energy expenditure in both clinical nutrition and sports sciences research. Various methods have been proposed for RMR determination, including predictive equations, isotopic dilution techniques, and i...

Full description

Saved in:
Bibliographic Details
Main Authors: César Ulises Olivas-León, Francisco Javier Olivas-Aguirre, Isaac Armando Chávez-Guevara, Horacio Eusebio Almanza-Reyes, Leslie Patrón-Romero, Genaro Rodríguez-Uribe, Francisco José Amaro-Gahete, Marco Antonio Hernández-Lepe
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sports
Subjects:
Online Access:https://www.mdpi.com/2075-4663/13/7/198
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Correct assessment of resting metabolic rate (RMR) is fundamental for estimating total energy expenditure in both clinical nutrition and sports sciences research. Various methods have been proposed for RMR determination, including predictive equations, isotopic dilution techniques, and indirect calorimetry. Over the past two decades, portable gas analyzers have emerged as promising alternatives, offering more accessible and cost-effective solutions for metabolic assessment. However, evidence regarding their validity remains inconsistent, particularly across diverse populations and varying metabolic assessment protocols. Methods: This systematic review was conducted in May 2025 using the PubMed, Web of Science, and EBSCO databases, following the PRISMA-DTA guidelines, and included observational studies with the objective of examining the available evidence regarding the validity of portable gas analyzers to determine RMR in humans. The methodological quality of each study was assessed using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results: From an initial pool of 230 studies, 16 met the eligibility criteria. The findings revealed notable variability in measurement validity among devices, mainly influenced by device model, population characteristics, and methodological factors. While portable analyzers such as FitMate and Q-NRG exhibited high validity, MedGem exhibited systematic biases, particularly in individuals with higher adiposity, leading to RMR overestimations. Conclusions: The main results demonstrated the critical need for rigorous validation of portable gas analyzers before their implementation in clinical and research settings to ensure their applicability across diverse populations and metabolic assessments.
ISSN:2075-4663