Bayesian Denoising Algorithm for Low SNR Photon-Counting Lidar Data via Probabilistic Parameter Optimization Based on Signal and Noise Distribution

The Ice, Cloud, and land Elevation Satellite-2 has provided unprecedented global surface elevation measurements through photon-counting Lidar (Light detection and ranging), yet its low signal-to-noise ratio (SNR) poses significant challenges for denoising algorithms. Existing methods, relying on fix...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi Liu, Jian Yang, Yue Ma, Wenbo Yu, Qijin Han, Zhibiao Zhou, Song Li
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2182
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Ice, Cloud, and land Elevation Satellite-2 has provided unprecedented global surface elevation measurements through photon-counting Lidar (Light detection and ranging), yet its low signal-to-noise ratio (SNR) poses significant challenges for denoising algorithms. Existing methods, relying on fixed parameters, struggle to adapt to dynamic noise distribution in rugged mountain regions where signal and noise change rapidly. This study proposes an adaptive Bayesian denoising algorithm integrating minimum spanning tree (MST) -based slope estimation and probabilistic parameter optimization. First, a simulation framework based on ATL03 data generates point clouds with ground truth labels under varying SNRs, achieving correlation coefficients > 0.9 between simulated and measured distributions. The algorithm then extracts surface profiles via MST and coarse filtering, fits slopes with >0.9 correlation to reference data, and derives the probability distribution function (PDF) of neighborhood photon counts. Bayesian estimation dynamically selects optimal clustering parameters (search radius and threshold), achieving F-scores > 0.9 even at extremely low SNR (1 photon/10 MHz noise). Validation against three benchmark algorithms (OPTICS, quadtree, DRAGANN) on simulated and ATL03 datasets demonstrates superior performance in mountainous terrain, with precision and recall improvements of 10–20% under high noise conditions. This work provides a robust framework for adaptive parameter selection in low-SNR photon-counting Lidar applications.
ISSN:2072-4292