SR-DETR: Target Detection in Maritime Rescue from UAV Imagery
The growth of maritime transportation has been accompanied by a gradual increase in accident rates, drawing greater attention to the critical issue of man-overboard incidents and drowning. Traditional maritime search-and-rescue (SAR) methods are often constrained by limited efficiency and high opera...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/12/2026 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The growth of maritime transportation has been accompanied by a gradual increase in accident rates, drawing greater attention to the critical issue of man-overboard incidents and drowning. Traditional maritime search-and-rescue (SAR) methods are often constrained by limited efficiency and high operational costs. Over the past few years, drones have demonstrated significant promise in improving the effectiveness of search-and-rescue operations. This is largely due to their exceptional ability to move freely and their capacity for wide-area monitoring. This study proposes an enhanced SR-DETR algorithm aimed at improving the detection of individuals who have fallen overboard. Specifically, the conventional multi-head self-attention (MHSA) mechanism is replaced with Efficient Additive Attention (EAA), which facilitates more efficient feature interaction while substantially reducing computational complexity. Moreover, we introduce a new feature aggregation module called the Cross-Stage Partial Parallel Atrous Feature Pyramid Network (CPAFPN). By refining spatial attention mechanisms, the module significantly boosts cross-scale target recognition capabilities in the model, especially offering advantages for detecting smaller objects. To improve localization precision, we develop a novel loss function for bounding box regression, named Focaler-GIoU, which performs particularly well when handling densely packed and small-scale objects. The proposed approach is validated through experiments and achieves an mAP of 86.5%, which surpasses the baseline RT-DETR model’s performance of 83.2%. These outcomes highlight the practicality and reliability of our method in detecting individuals overboard, contributing to more precise and resource-efficient solutions for real-time maritime rescue efforts. |
---|---|
ISSN: | 2072-4292 |