Fast Intrinsic–Extrinsic Calibration for Pose-Only Structure-from-Motion
Structure-from-motion (SfM) is a foundational technology that facilitates 3D scene understanding and visual localization. However, bundle adjustment (BA)-based SfM is usually very time-consuming, especially when dealing with numerous unknown focal length cameras. To address these limitations, we pro...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/13/2247 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structure-from-motion (SfM) is a foundational technology that facilitates 3D scene understanding and visual localization. However, bundle adjustment (BA)-based SfM is usually very time-consuming, especially when dealing with numerous unknown focal length cameras. To address these limitations, we proposed a novel SfM system based on pose-only adjustment (PA) for intrinsic and extrinsic joint optimization to accelerate computing. Firstly, we propose a base frame selection method based on depth uncertainty, which integrates the focal length and parallax angle under a multi-camera system to provide more stable depth estimation for subsequent optimization. We explicitly derive a global PA of joint intrinsic and extrinsic parameters to reduce the high dimensionality of the parameter space and deal with cameras with unknown focal lengths, improving the efficiency of optimization. Finally, a novel pose-only re-triangulation (PORT) mechanism is proposed for enhanced reconstruction completeness by recovering failed triangulations from incomplete point tracks. The proposed framework has been demonstrated to be both faster and comparable in accuracy to state-of-the-art SfM systems, as evidenced by public benchmarking and analysis of the visitor photo dataset. |
---|---|
ISSN: | 2072-4292 |