An Integrated Framework for Internal Replenishment Processes of Warehouses Using Approximate Dynamic Programming
Warehouses are vital in linking production to consumption, often using a forward–reserve layout to balance picking efficiency and bulk storage. However, replenishing the forward area from reserve storage is prone to delays and congestion, especially during high-demand periods. This study investigate...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/14/7767 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Warehouses are vital in linking production to consumption, often using a forward–reserve layout to balance picking efficiency and bulk storage. However, replenishing the forward area from reserve storage is prone to delays and congestion, especially during high-demand periods. This study investigates the strategic use of buffer areas—intermediate zones between forward and reserve locations—to enhance flexibility and reduce bottlenecks. Although buffer zones are common in practice, they often lack a structured decision-making framework. We address this gap by developing an optimization model that integrates demand forecasts to guide daily replenishment decisions. To handle the computational complexity arising from large state and action spaces, we implement an approximate dynamic programming (ADP) approach using certainty-equivalent control within a rolling-horizon framework. A real-world case study from an automotive spare parts warehouse demonstrates the model’s effectiveness. Results show that strategically integrating buffer zones with an ADP model significantly improves replenishment timing, reduces direct picking by up to 90%, minimizes congestion, and enhances overall flow of intra-warehouse inventory management. |
---|---|
ISSN: | 2076-3417 |