Inversion of County-Level Farmland Soil Moisture Based on SHAP and Stacking Models

Accurate monitoring of soil moisture in arid agricultural regions is essential for improving crop production and the efficient management of water resources. This study focuses on Shihezi City in Xinjiang, China. We propose a novel method for soil moisture retrieval by integrating Sentinel-1 and Sen...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui Zhan, Peng Guo, Jiaxin Hao, Jiali Li, Zixu Wang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/14/1506
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate monitoring of soil moisture in arid agricultural regions is essential for improving crop production and the efficient management of water resources. This study focuses on Shihezi City in Xinjiang, China. We propose a novel method for soil moisture retrieval by integrating Sentinel-1 and Sentinel-2 remote sensing data. Dual-polarization parameters (VV + VH and VV × VH) were constructed and tested. Pearson correlation analysis showed that these polarization combinations carried the most useful information for soil moisture estimation. We then applied Shapley Additive exPlanations (SHAP) for feature selection, and a Stacking model was used to perform soil moisture inversion based on the selected features. SHAP values derived from the coupled support vector regression (SVR) and random forest regression (RFR) models were used to select an additional six key features for model construction. Building on this framework, a comparative analysis was conducted to evaluate the predictive performance of multivariate linear regression (MLR), RFR, SVR, and a Stacking model that integrates these three models. The results demonstrate that the Stacking model outperformed other approaches in soil moisture retrieval, achieving a higher R<sup>2</sup> of 0.70 compared to 0.52, 0.61, and 0.62 for MLR, RFR, and SVR, respectively. This process concluded with the use of the Stacking model to generate a county-level farmland soil moisture distribution map, which provides an objective and practical approach to guide agricultural management and the optimized allocation of water resources in arid regions.
ISSN:2077-0472