Orthogonalizing q-Bernoulli polynomials
In this study, we utilize the Gram-Schmidt orthogonalization method to construct a new set of orthogonal polynomials called OBn(x,q){{\rm{OB}}}_{n}(x,q) from the q-Bernoulli polynomials. We demonstrate the relationship between polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and the little q-Legendre polyno...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2025-06-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | https://doi.org/10.1515/dema-2025-0133 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we utilize the Gram-Schmidt orthogonalization method to construct a new set of orthogonal polynomials called OBn(x,q){{\rm{OB}}}_{n}(x,q) from the q-Bernoulli polynomials. We demonstrate the relationship between polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and the little q-Legendre polynomials, and derive a generalized formula for OBn(x,q){{\rm{OB}}}_{n}(x,q) by leveraging the little q-Legendre polynomials. Furthermore, we present some properties of polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q). Finally, we introduce a hybrid of block-pulse function and orthogonal polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and examine various properties of these polynomials. |
---|---|
ISSN: | 2391-4661 |