Penerapan Extreme Learning Machine (ELM) untuk Peramalan Laju Inflasi di Indonesia
Inflasi merupakan salah satu indikator untuk mengukur perkembangan suatu bangsa. Apabila inflasi tidak terkontrol akan memberikan banyak dampak negative terhadap masyarakat disuatu negara. Ada banyak cara untuk mengendalikan inflasi, salah satunya dengan peramalan. Peramalan adalah suatu aktivitas u...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
University of Brawijaya
2019-02-01
|
Series: | Jurnal Teknologi Informasi dan Ilmu Komputer |
Online Access: | https://jtiik.ub.ac.id/index.php/jtiik/article/view/900 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inflasi merupakan salah satu indikator untuk mengukur perkembangan suatu bangsa. Apabila inflasi tidak terkontrol akan memberikan banyak dampak negative terhadap masyarakat disuatu negara. Ada banyak cara untuk mengendalikan inflasi, salah satunya dengan peramalan. Peramalan adalah suatu aktivitas untuk mengetahui kejadian di masa mendatang berdasarkan data masa lalu. Pada penelitian ini menggunakan metode kecerdasan buatan yakni extreme learning machine (ELM). Kelebihan ELM yaitu cepat dalam proses pembelajaran. Berdasarkan penggujian yang dilakukan metode ELM mendapatkan nilai kesalahan sebesar 0.0202008, lebih kecil dibandingkan dengan metode backpropagation sebesar 1.16035821. Hal tersebut membuktikan bahwa metode ELM sangat cocok digunakan untuk peramalan.
Abstract
Inflation is one indicator to measure the development of a nation. If inflation is not controlled will give many negative impacts to the people in a country. There are many ways to control inflation, one with forecasting. Forecasting is an activity to know future events based on past data. In this research using artificial intelligence method is extreme learning machine (ELM). The advantages of ELM are fast in the learning process. Based on ELM testing gets obtained an error value of 0.0202008, smaller than the backpropagation method of 1.16035821. It proves that ELM method is very suitable for forecasting.
|
---|---|
ISSN: | 2355-7699 2528-6579 |