Remote Sensing Extraction of Damaged Buildings in the Shigatse Earthquake, 2025: A Hybrid YOLO-E and SAM2 Approach

In January 2025, a magnitude 6.8 earthquake struck Dingri County, Shigatse, Tibet, causing severe damage. Rapid and precise extraction of damaged buildings is essential for emergency relief and rebuilding efforts. This study proposes an approach integrating YOLO-E (Real-Time Seeing Anything) and the...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhimin Wu, Chenyao Qu, Wei Wang, Zelang Miao, Huihui Feng
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4375
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In January 2025, a magnitude 6.8 earthquake struck Dingri County, Shigatse, Tibet, causing severe damage. Rapid and precise extraction of damaged buildings is essential for emergency relief and rebuilding efforts. This study proposes an approach integrating YOLO-E (Real-Time Seeing Anything) and the Segment Anything Model 2 (SAM2) to extract damaged buildings with multi-source remote sensing images, including post-earthquake Gaofen-7 imagery (0.80 m), Beijing-3 imagery (0.30 m), and pre-earthquake Google satellite imagery (0.15 m), over the affected region. In this hybrid approach, YOLO-E functions as the preliminary segmentation module for initial segmentation. It leverages its real-time detection and segmentation capability to locate potential damaged building regions and generate coarse segmentation masks rapidly. Subsequently, SAM2 follows as a refinement step, incorporating shapefile information from pre-disaster sources to apply precise, pixel-level segmentation. The dataset used for training contained labeled examples of damaged buildings, and the model optimization was carried out using stochastic gradient descent (SGD), with cross-entropy and mean squared error as the selected loss functions. Upon evaluation, the model reached a precision of 0.840, a recall of 0.855, an F1-score of 0.847, and an IoU of 0.735. It successfully extracted 492 suspected damaged building patches within a radius of 20 km from the earthquake epicenter, clearly showing the distribution characteristics of damaged buildings concentrated in the earthquake fault zone. In summary, this hybrid YOLO-E and SAM2 approach, leveraging multi-source remote sensing imagery, delivers precise and rapid extraction of damaged buildings with a precision of 0.840, recall of 0.855, and IoU of 0.735, effectively supporting targeted earthquake rescue and post-disaster reconstruction efforts in the Dingri County fault zone.
ISSN:1424-8220