High-Temperature Tensile Grain Evolution and Mechanical Properties of Additively Manufactured TA15 Aerospace Titanium Alloy

This study investigates the grain characteristics and high-temperature tensile properties of an additively manufactured (AM) TA15 titanium alloy. Directed energy deposition (DED) was utilized for its high material efficiency and design flexibility to explore the alloy’s applicability in aerospace ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Pengfei Li, Zhenkun Dong, Qingtao Yang, Hao Xu, Dehai Kong, Minghui Hu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/6/677
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the grain characteristics and high-temperature tensile properties of an additively manufactured (AM) TA15 titanium alloy. Directed energy deposition (DED) was utilized for its high material efficiency and design flexibility to explore the alloy’s applicability in aerospace manufacturing, where TA15 is valued for its excellent high-temperature performance. A comparative analysis between DED and hot-rolled TA15 alloys was conducted at 25 °C and 600 °C to examine the influence of grain size and crystallographic texture on mechanical behavior. The AM TA15 alloy exhibited superior tensile properties at both temperatures compared to its hot-rolled counterpart. Microstructural analysis revealed finer grain size, stronger α-phase diffraction intensity, and altered grain boundary misorientation in the AM alloy after high-temperature testing, accompanied by improved plasticity. These findings highlight the potential of thermal process optimization and microstructural tailoring to enhance the high-temperature performance of AM TA15, offering valuable insights for the fabrication of critical aerospace components.
ISSN:2075-4701