Facile approach to prepare pH and redox-responsive nanogels via Diels-Alder click reaction
A novel pH and redox responsive system of sub-100 nm nanogels was prepared by arm-first approach via Diels-Alder click reaction. First, well-defined poly(ethylene glycol)-block-poly(styrene-alt-maleic anhydride) (PEG-b-PSM) was synthesized and subsequently functionalized with furfuryl amine, leading...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Budapest University of Technology and Economics
2018-08-01
|
Series: | eXPRESS Polymer Letters |
Subjects: | |
Online Access: | http://www.expresspolymlett.com/letolt.php?file=EPL-0009032&mi=cd |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel pH and redox responsive system of sub-100 nm nanogels was prepared by arm-first approach via Diels-Alder click reaction. First, well-defined poly(ethylene glycol)-block-poly(styrene-alt-maleic anhydride) (PEG-b-PSM) was synthesized and subsequently functionalized with furfuryl amine, leading to the formation of the dual-functional block copolymer of PEG-b-PSMf. The furfuryl groups in the PSMf block were employed to incorporate a redox-responsive linkage and the carboxylic acid moieties generated through functionalization acted as a pH-responsive part. The Diels-Alder click reaction between a bismaleimide crosslinker and PEG-b-PSMf was conducted at 60 °C, affording star-like nanogel structures. Doxorubicin, a model anticancer drug, was loaded into to the core of the nanogels primarily by the ionic interaction with carboxylates of core blocks and a highest drug loading capacity of 38.1% was obtained. Furthermore, the in vitro profile showed a low release percentage (11.2%) of DOX at PBS pH 7.4, whereas a burst release (62%) at pH 5.0 in the presence of 10 mM glutathione, indicating the effective pH and redox responsive characteristic of the PEG-b-PSMf nanogels. |
---|---|
ISSN: | 1788-618X |