Cheng, H., Johansen, K., Jin, B., Xu, S., Zhao, X., Han, L., & McCabe, M. F. (2025). Human footprint with machine learning identifies risks of the invasive weed Conyza sumatrensis across land-use types under climate change. Elsevier.
Chicago Style (17th ed.) CitationCheng, Hua, Kasper Johansen, Baocheng Jin, Shiqin Xu, Xuechun Zhao, Liqin Han, and Matthew F. McCabe. Human Footprint with Machine Learning Identifies Risks of the Invasive Weed Conyza Sumatrensis Across Land-use Types Under Climate Change. Elsevier, 2025.
MLA (9th ed.) CitationCheng, Hua, et al. Human Footprint with Machine Learning Identifies Risks of the Invasive Weed Conyza Sumatrensis Across Land-use Types Under Climate Change. Elsevier, 2025.
Warning: These citations may not always be 100% accurate.