Quantifying Root Cohesion Spatial Heterogeneity Using Remote Sensing for Improved Landslide Susceptibility Modeling: A Case Study of Caijiachuan Landslides

This study investigates the influence of root cohesion spatial heterogeneity on rainfall-induced landslide distribution across the Loess Plateau, addressing limitations in existing methods that oversimplify root reinforcement. Leveraging Landsat and GaoFen satellite images, we developed a regional r...

Full description

Saved in:
Bibliographic Details
Main Authors: Zelang Miao, Yaopeng Xiong, Zhiwei Cheng, Bin Wu, Wei Wang, Zuwu Peng
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/4221
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the influence of root cohesion spatial heterogeneity on rainfall-induced landslide distribution across the Loess Plateau, addressing limitations in existing methods that oversimplify root reinforcement. Leveraging Landsat and GaoFen satellite images, we developed a regional root cohesion inversion model that quantifies spatial heterogeneity using tree height (derived from time series Landsat imagery) and above-ground biomass (from 30 m resolution satellite products). This approach, integrated with land use-specific hydrological parameters and an infinite slope stability model, significantly improves landslide susceptibility predictions compared to models ignoring root cohesion or using uniform assignments. High-resolution pre- and post-rainfall GaoFen satellite imagery validated landslide inventories, revealing dynamic susceptibility patterns: farmland exhibited the highest risk, followed by artificial and secondary forests, with susceptibility escalating post-rainfall. This study underscores the critical role of remote sensing-driven root cohesion mapping in landslide risk assessment, offering actionable insights for land use planning and disaster mitigation on the Loess Plateau.
ISSN:1424-8220