Quantifying Root Cohesion Spatial Heterogeneity Using Remote Sensing for Improved Landslide Susceptibility Modeling: A Case Study of Caijiachuan Landslides
This study investigates the influence of root cohesion spatial heterogeneity on rainfall-induced landslide distribution across the Loess Plateau, addressing limitations in existing methods that oversimplify root reinforcement. Leveraging Landsat and GaoFen satellite images, we developed a regional r...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/13/4221 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the influence of root cohesion spatial heterogeneity on rainfall-induced landslide distribution across the Loess Plateau, addressing limitations in existing methods that oversimplify root reinforcement. Leveraging Landsat and GaoFen satellite images, we developed a regional root cohesion inversion model that quantifies spatial heterogeneity using tree height (derived from time series Landsat imagery) and above-ground biomass (from 30 m resolution satellite products). This approach, integrated with land use-specific hydrological parameters and an infinite slope stability model, significantly improves landslide susceptibility predictions compared to models ignoring root cohesion or using uniform assignments. High-resolution pre- and post-rainfall GaoFen satellite imagery validated landslide inventories, revealing dynamic susceptibility patterns: farmland exhibited the highest risk, followed by artificial and secondary forests, with susceptibility escalating post-rainfall. This study underscores the critical role of remote sensing-driven root cohesion mapping in landslide risk assessment, offering actionable insights for land use planning and disaster mitigation on the Loess Plateau. |
---|---|
ISSN: | 1424-8220 |