Optimal Design of Variable-Stiffness Fiber-Reinforced Composites

The concept of variable-stiffness composites allows the stiffness properties to vary spatially in the material. In the case of fiber-reinforced composites, the mechanical properties of the composite can be improved by tailoring the fiber orientations in a spatially optimal manner. In this paper, the...

Full description

Saved in:
Bibliographic Details
Main Authors: Evangelos P. Hadjigeorgiou, Christos A. Patsouras, Vassilios K. Kalpakides
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/12/1909
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concept of variable-stiffness composites allows the stiffness properties to vary spatially in the material. In the case of fiber-reinforced composites, the mechanical properties of the composite can be improved by tailoring the fiber orientations in a spatially optimal manner. In this paper, the problem of optimal spatial orientation of fibers in a two-dimensional composite structure under in-plane loading is studied, using the strain energy-minimizing method. The fiber orientation is assumed to be constant within each element of the model but varies from element to element. The optimal design problem is solved numerically using a global optimization method based on a genetic algorithm. Some numerical examples illustrate the efficiency and applicability of the method.
ISSN:2227-7390