Mathematical Optimization in Machine Learning for Computational Chemistry
Machine learning (ML) is transforming computational chemistry by accelerating molecular simulations, property prediction, and inverse design. Central to this transformation is mathematical optimization, which underpins nearly every stage of model development, from training neural networks and tuning...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Computation |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-3197/13/7/169 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine learning (ML) is transforming computational chemistry by accelerating molecular simulations, property prediction, and inverse design. Central to this transformation is mathematical optimization, which underpins nearly every stage of model development, from training neural networks and tuning hyperparameters to navigating chemical space for molecular discovery. This review presents a structured overview of optimization techniques used in ML for computational chemistry, including gradient-based methods (e.g., SGD and Adam), probabilistic approaches (e.g., Monte Carlo sampling and Bayesian optimization), and spectral methods. We classify optimization targets into model parameter optimization, hyperparameter selection, and molecular optimization and analyze their application across supervised, unsupervised, and reinforcement learning frameworks. Additionally, we examine key challenges such as data scarcity, limited generalization, and computational cost, outlining how mathematical strategies like active learning, meta-learning, and hybrid physics-informed models can address these issues. By bridging optimization methodology with domain-specific challenges, this review highlights how tailored optimization strategies enhance the accuracy, efficiency, and scalability of ML models in computational chemistry. |
---|---|
ISSN: | 2079-3197 |