Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey

The Galactic Bulge Time-Domain Survey (GBTDS) of the Roman Space Telescope will take high-cadence data of the Galactic bulge. We investigate the asteroseismic potential of this survey for red giants. We simulate the detectability of global asteroseismic frequencies, ${\nu }_{{\rm{\max }}}$ and Δ ν ,...

Full description

Saved in:
Bibliographic Details
Main Authors: Trevor J. Weiss, Noah J. Downing, Marc H. Pinsonneault, Joel C. Zinn, Dennis Stello, Timothy R. Bedding, Kaili Cao, Marc Hon, Claudia Reyes, B. Scott Gaudi, Robert F. Wilson, Daniel Huber, Sanjib Sharma
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/adde5b
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839636115789709312
author Trevor J. Weiss
Noah J. Downing
Marc H. Pinsonneault
Joel C. Zinn
Dennis Stello
Timothy R. Bedding
Kaili Cao
Marc Hon
Claudia Reyes
B. Scott Gaudi
Robert F. Wilson
Daniel Huber
Sanjib Sharma
author_facet Trevor J. Weiss
Noah J. Downing
Marc H. Pinsonneault
Joel C. Zinn
Dennis Stello
Timothy R. Bedding
Kaili Cao
Marc Hon
Claudia Reyes
B. Scott Gaudi
Robert F. Wilson
Daniel Huber
Sanjib Sharma
author_sort Trevor J. Weiss
collection DOAJ
description The Galactic Bulge Time-Domain Survey (GBTDS) of the Roman Space Telescope will take high-cadence data of the Galactic bulge. We investigate the asteroseismic potential of this survey for red giants. We simulate the detectability of global asteroseismic frequencies, ${\nu }_{{\rm{\max }}}$ and Δ ν , by modifying Kepler data to match nominal GBTDS observing strategies, considering different noise models, observing cadences, and detection algorithms. Our baseline case, using conservative assumptions, consistently leads to asteroseismic ${\nu }_{{\rm{\max }}}$ detection probabilities above 80% for red clump and red giant branch (RGB) stars brighter than the 16th magnitude in Roman’s F146 filter. We then inject these detection probabilities into a Galaxia model of the bulge to estimate asteroseismic yields. For our nominal case, we detect 290,000 stars in total, with 185,000 detections in the bulge. Different assumptions give bulge yields from 135,000 to 349,000 stars. For stars with measured ${\nu }_{{\rm{\max }}}$ , we find that we can recover Δ ν in 21%–42% of red clump stars, and 69%–92% of RGB stars. The expected yield and stellar parameter precision we predict for Roman asteroseismology promise to characterize planet-hosting stellar populations and to resolve questions regarding the formation history of the bulge.
format Article
id doaj-art-0b51de651bcc44699717593e14d9451a
institution Matheson Library
issn 1538-4357
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj-art-0b51de651bcc44699717593e14d9451a2025-07-08T07:48:38ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-01987218110.3847/1538-4357/adde5bModeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain SurveyTrevor J. Weiss0https://orcid.org/0009-0008-5554-9144Noah J. Downing1https://orcid.org/0009-0006-8874-3846Marc H. Pinsonneault2https://orcid.org/0000-0002-7549-7766Joel C. Zinn3https://orcid.org/0000-0002-7550-7151Dennis Stello4https://orcid.org/0000-0002-4879-3519Timothy R. Bedding5https://orcid.org/0000-0001-5222-4661Kaili Cao6https://orcid.org/0000-0002-1699-6944Marc Hon7https://orcid.org/0000-0003-2400-6960Claudia Reyes8https://orcid.org/0000-0001-9632-2706B. Scott Gaudi9https://orcid.org/0000-0003-0395-9869Robert F. Wilson10https://orcid.org/0000-0002-4235-6369Daniel Huber11https://orcid.org/0000-0001-8832-4488Sanjib Sharma12https://orcid.org/0000-0002-0920-809XDepartment of Physics and Astronomy, California State University , Long Beach, Long Beach, CA 90840, USADepartment of Astronomy, The Ohio State University , Columbus, OH 43210, USADepartment of Astronomy, The Ohio State University , Columbus, OH 43210, USADepartment of Physics and Astronomy, California State University , Long Beach, Long Beach, CA 90840, USASchool of Physics, University of New South Wales , NSW 2052, AustraliaSydney Institute for Astronomy (SIfA), School of Physics, University of Sydney , NSW 2006, AustraliaCenter for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University , 191 West Woodruff Ave., Columbus, OH 43210, USA; Department of Physics, The Ohio State University , 191 West Woodruff Ave., Columbus, OH 43210, USAKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , Cambridge, MA 02139, USAResearch School of Astronomy & Astrophysics, Australian National University , Canberra ACT 2611, AustraliaDepartment of Astronomy, The Ohio State University , Columbus, OH 43210, USADepartment of Astronomy, University of Maryland , College Park, MD 20742, USA; NASA Goddard Space Flight Center , Greenbelt, MD 20771, USASydney Institute for Astronomy (SIfA), School of Physics, University of Sydney , NSW 2006, Australia; Institute for Astronomy, University of Hawai’i , 2680 Woodlawn Drive, Honolulu, HI 96822, USASpace Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USAThe Galactic Bulge Time-Domain Survey (GBTDS) of the Roman Space Telescope will take high-cadence data of the Galactic bulge. We investigate the asteroseismic potential of this survey for red giants. We simulate the detectability of global asteroseismic frequencies, ${\nu }_{{\rm{\max }}}$ and Δ ν , by modifying Kepler data to match nominal GBTDS observing strategies, considering different noise models, observing cadences, and detection algorithms. Our baseline case, using conservative assumptions, consistently leads to asteroseismic ${\nu }_{{\rm{\max }}}$ detection probabilities above 80% for red clump and red giant branch (RGB) stars brighter than the 16th magnitude in Roman’s F146 filter. We then inject these detection probabilities into a Galaxia model of the bulge to estimate asteroseismic yields. For our nominal case, we detect 290,000 stars in total, with 185,000 detections in the bulge. Different assumptions give bulge yields from 135,000 to 349,000 stars. For stars with measured ${\nu }_{{\rm{\max }}}$ , we find that we can recover Δ ν in 21%–42% of red clump stars, and 69%–92% of RGB stars. The expected yield and stellar parameter precision we predict for Roman asteroseismology promise to characterize planet-hosting stellar populations and to resolve questions regarding the formation history of the bulge.https://doi.org/10.3847/1538-4357/adde5bGalactic bulgeAsteroseismologyStellar ages
spellingShingle Trevor J. Weiss
Noah J. Downing
Marc H. Pinsonneault
Joel C. Zinn
Dennis Stello
Timothy R. Bedding
Kaili Cao
Marc Hon
Claudia Reyes
B. Scott Gaudi
Robert F. Wilson
Daniel Huber
Sanjib Sharma
Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey
The Astrophysical Journal
Galactic bulge
Asteroseismology
Stellar ages
title Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey
title_full Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey
title_fullStr Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey
title_full_unstemmed Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey
title_short Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey
title_sort modeling asteroseismic yields for the roman galactic bulge time domain survey
topic Galactic bulge
Asteroseismology
Stellar ages
url https://doi.org/10.3847/1538-4357/adde5b
work_keys_str_mv AT trevorjweiss modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT noahjdowning modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT marchpinsonneault modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT joelczinn modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT dennisstello modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT timothyrbedding modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT kailicao modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT marchon modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT claudiareyes modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT bscottgaudi modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT robertfwilson modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT danielhuber modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey
AT sanjibsharma modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey