Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey
The Galactic Bulge Time-Domain Survey (GBTDS) of the Roman Space Telescope will take high-cadence data of the Galactic bulge. We investigate the asteroseismic potential of this survey for red giants. We simulate the detectability of global asteroseismic frequencies, ${\nu }_{{\rm{\max }}}$ and Δ ν ,...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2025-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/adde5b |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1839636115789709312 |
---|---|
author | Trevor J. Weiss Noah J. Downing Marc H. Pinsonneault Joel C. Zinn Dennis Stello Timothy R. Bedding Kaili Cao Marc Hon Claudia Reyes B. Scott Gaudi Robert F. Wilson Daniel Huber Sanjib Sharma |
author_facet | Trevor J. Weiss Noah J. Downing Marc H. Pinsonneault Joel C. Zinn Dennis Stello Timothy R. Bedding Kaili Cao Marc Hon Claudia Reyes B. Scott Gaudi Robert F. Wilson Daniel Huber Sanjib Sharma |
author_sort | Trevor J. Weiss |
collection | DOAJ |
description | The Galactic Bulge Time-Domain Survey (GBTDS) of the Roman Space Telescope will take high-cadence data of the Galactic bulge. We investigate the asteroseismic potential of this survey for red giants. We simulate the detectability of global asteroseismic frequencies, ${\nu }_{{\rm{\max }}}$ and Δ ν , by modifying Kepler data to match nominal GBTDS observing strategies, considering different noise models, observing cadences, and detection algorithms. Our baseline case, using conservative assumptions, consistently leads to asteroseismic ${\nu }_{{\rm{\max }}}$ detection probabilities above 80% for red clump and red giant branch (RGB) stars brighter than the 16th magnitude in Roman’s F146 filter. We then inject these detection probabilities into a Galaxia model of the bulge to estimate asteroseismic yields. For our nominal case, we detect 290,000 stars in total, with 185,000 detections in the bulge. Different assumptions give bulge yields from 135,000 to 349,000 stars. For stars with measured ${\nu }_{{\rm{\max }}}$ , we find that we can recover Δ ν in 21%–42% of red clump stars, and 69%–92% of RGB stars. The expected yield and stellar parameter precision we predict for Roman asteroseismology promise to characterize planet-hosting stellar populations and to resolve questions regarding the formation history of the bulge. |
format | Article |
id | doaj-art-0b51de651bcc44699717593e14d9451a |
institution | Matheson Library |
issn | 1538-4357 |
language | English |
publishDate | 2025-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj-art-0b51de651bcc44699717593e14d9451a2025-07-08T07:48:38ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-01987218110.3847/1538-4357/adde5bModeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain SurveyTrevor J. Weiss0https://orcid.org/0009-0008-5554-9144Noah J. Downing1https://orcid.org/0009-0006-8874-3846Marc H. Pinsonneault2https://orcid.org/0000-0002-7549-7766Joel C. Zinn3https://orcid.org/0000-0002-7550-7151Dennis Stello4https://orcid.org/0000-0002-4879-3519Timothy R. Bedding5https://orcid.org/0000-0001-5222-4661Kaili Cao6https://orcid.org/0000-0002-1699-6944Marc Hon7https://orcid.org/0000-0003-2400-6960Claudia Reyes8https://orcid.org/0000-0001-9632-2706B. Scott Gaudi9https://orcid.org/0000-0003-0395-9869Robert F. Wilson10https://orcid.org/0000-0002-4235-6369Daniel Huber11https://orcid.org/0000-0001-8832-4488Sanjib Sharma12https://orcid.org/0000-0002-0920-809XDepartment of Physics and Astronomy, California State University , Long Beach, Long Beach, CA 90840, USADepartment of Astronomy, The Ohio State University , Columbus, OH 43210, USADepartment of Astronomy, The Ohio State University , Columbus, OH 43210, USADepartment of Physics and Astronomy, California State University , Long Beach, Long Beach, CA 90840, USASchool of Physics, University of New South Wales , NSW 2052, AustraliaSydney Institute for Astronomy (SIfA), School of Physics, University of Sydney , NSW 2006, AustraliaCenter for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University , 191 West Woodruff Ave., Columbus, OH 43210, USA; Department of Physics, The Ohio State University , 191 West Woodruff Ave., Columbus, OH 43210, USAKavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , Cambridge, MA 02139, USAResearch School of Astronomy & Astrophysics, Australian National University , Canberra ACT 2611, AustraliaDepartment of Astronomy, The Ohio State University , Columbus, OH 43210, USADepartment of Astronomy, University of Maryland , College Park, MD 20742, USA; NASA Goddard Space Flight Center , Greenbelt, MD 20771, USASydney Institute for Astronomy (SIfA), School of Physics, University of Sydney , NSW 2006, Australia; Institute for Astronomy, University of Hawai’i , 2680 Woodlawn Drive, Honolulu, HI 96822, USASpace Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USAThe Galactic Bulge Time-Domain Survey (GBTDS) of the Roman Space Telescope will take high-cadence data of the Galactic bulge. We investigate the asteroseismic potential of this survey for red giants. We simulate the detectability of global asteroseismic frequencies, ${\nu }_{{\rm{\max }}}$ and Δ ν , by modifying Kepler data to match nominal GBTDS observing strategies, considering different noise models, observing cadences, and detection algorithms. Our baseline case, using conservative assumptions, consistently leads to asteroseismic ${\nu }_{{\rm{\max }}}$ detection probabilities above 80% for red clump and red giant branch (RGB) stars brighter than the 16th magnitude in Roman’s F146 filter. We then inject these detection probabilities into a Galaxia model of the bulge to estimate asteroseismic yields. For our nominal case, we detect 290,000 stars in total, with 185,000 detections in the bulge. Different assumptions give bulge yields from 135,000 to 349,000 stars. For stars with measured ${\nu }_{{\rm{\max }}}$ , we find that we can recover Δ ν in 21%–42% of red clump stars, and 69%–92% of RGB stars. The expected yield and stellar parameter precision we predict for Roman asteroseismology promise to characterize planet-hosting stellar populations and to resolve questions regarding the formation history of the bulge.https://doi.org/10.3847/1538-4357/adde5bGalactic bulgeAsteroseismologyStellar ages |
spellingShingle | Trevor J. Weiss Noah J. Downing Marc H. Pinsonneault Joel C. Zinn Dennis Stello Timothy R. Bedding Kaili Cao Marc Hon Claudia Reyes B. Scott Gaudi Robert F. Wilson Daniel Huber Sanjib Sharma Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey The Astrophysical Journal Galactic bulge Asteroseismology Stellar ages |
title | Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey |
title_full | Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey |
title_fullStr | Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey |
title_full_unstemmed | Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey |
title_short | Modeling Asteroseismic Yields for the Roman Galactic Bulge Time-domain Survey |
title_sort | modeling asteroseismic yields for the roman galactic bulge time domain survey |
topic | Galactic bulge Asteroseismology Stellar ages |
url | https://doi.org/10.3847/1538-4357/adde5b |
work_keys_str_mv | AT trevorjweiss modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT noahjdowning modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT marchpinsonneault modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT joelczinn modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT dennisstello modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT timothyrbedding modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT kailicao modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT marchon modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT claudiareyes modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT bscottgaudi modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT robertfwilson modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT danielhuber modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey AT sanjibsharma modelingasteroseismicyieldsfortheromangalacticbulgetimedomainsurvey |