Quantifying Topography-Dependent Ultrafine Particle Exposure from Diesel Emissions in Appalachia Using Traffic Counts as a Surrogate Measure

Diesel particulate matter—primarily ultrafine particles (UFPs), defined as particles smaller than 0.1 µm—are released by diesel-powered vehicles, especially those used in heavy-duty hauling. While much of the existing research on traffic-related air pollution focuses on urban environments, limited a...

Full description

Saved in:
Bibliographic Details
Main Authors: Nafisat O. Isa, Bailley Reggetz, Ojo. A. Thomas, Andrew C. Nix, Sijin Wen, Travis Knuckles, Marcus Cervantes, Ranjita Misra, Michael McCawley
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7415
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diesel particulate matter—primarily ultrafine particles (UFPs), defined as particles smaller than 0.1 µm—are released by diesel-powered vehicles, especially those used in heavy-duty hauling. While much of the existing research on traffic-related air pollution focuses on urban environments, limited attention has been paid to how complex topography influences the concentration of UFPs, particularly in areas with significant truck traffic. With a focus on Morgantown, West Virginia, an area distinguished by a steep topography, this study investigates how travel over two different terrain conditions affects UFP concentrations close to roadways. Specifically, we sought to determine if the truck count taken from simultaneous video evidence could be used as a surrogate for varying topography in determining the concentration of UFPs. This study shows that “TRUCK COUNT” and “TRUCK SPEED” have a linear relationship and yield a possible surrogate measure of the lung dose of UFP number concentration. Our results demonstrate a statistically significant (<i>p</i> < 0.1) linear relationship between truck count and UFP number concentration (R = 0.77 and 0.40), validating truck count along with truck speed as a medium effect surrogate for estimating near-road UFP exposure. Dose estimation using the Multiple-Path Particle Dosimetry (MPPD) model further revealed that approximately 30% of inhaled UFPs are deposited in the alveolar region, underscoring the public health relevance of this exposure pathway in topographically complex areas. This method ultimately awaits comparison with health effects to determine its true potential as a useful exposure metric.
ISSN:2076-3417