A Riemannian Dichotomizer Approach on Symmetric Positive Definite Manifolds for Offline, Writer-Independent Signature Verification

Automated handwritten signature verification continues to pose significant challenges. A common approach for developing writer-independent signature verifiers involves the use of a dichotomizer, a function that generates a dissimilarity vector with the differences between similar and dissimilar pair...

Full description

Saved in:
Bibliographic Details
Main Authors: Nikolaos Vasilakis, Christos Chorianopoulos, Elias N. Zois
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7015
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automated handwritten signature verification continues to pose significant challenges. A common approach for developing writer-independent signature verifiers involves the use of a dichotomizer, a function that generates a dissimilarity vector with the differences between similar and dissimilar pairs of signature descriptors as components. The Dichotomy Transform was applied within a Euclidean or vector space context, where vectored representations of handwritten signatures were embedded in and conformed to Euclidean geometry. Recent advances in computer vision indicate that image representations to the Riemannian Symmetric Positive Definite (SPD) manifolds outperform vector space representations. In offline signature verification, both writer-dependent and writer-independent systems have recently begun leveraging Riemannian frameworks in the space of SPD matrices, demonstrating notable success. This work introduces, for the first time in the signature verification literature, a Riemannian dichotomizer employing Riemannian dissimilarity vectors (RDVs). The proposed framework explores a number of local and global (or common pole) topologies, as well as simple serial and parallel fusion strategies for RDVs for constructing robust models. Experiments were conducted on five popular signature datasets of Western and Asian origin, using blind intra- and cross-lingual experimental protocols. The results indicate the discriminative capabilities of the proposed Riemannian dichotomizer framework, which can be compared to other state-of-the-art and computationally demanding architectures.
ISSN:2076-3417