Advancing human activity recognition with quaternion-based recurrent neural networks

Human activity recognition (HAR) stands as a vital nexus in the synthesis of healthcare, sports analytics, and human–computer interaction. This research introduces a groundbreaking approach to HAR by amalgamating the multidimensional strengths of quaternion algebra with the temporal sensitivity of r...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Gayathri Devi, Ratnala Venkata Siva Harish, N. Nalini, K. D. V. Prasad, N. Nagabhooshanam
Format: Article
Language:English
Published: Taylor & Francis Group 2025-07-01
Series:Automatika
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/00051144.2025.2480419
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human activity recognition (HAR) stands as a vital nexus in the synthesis of healthcare, sports analytics, and human–computer interaction. This research introduces a groundbreaking approach to HAR by amalgamating the multidimensional strengths of quaternion algebra with the temporal sensitivity of recurrent neural networks, birthing the “Human Activity Recognition Utilizing Quaternion-Based Recurrent Neural Networks (QRNNs)” model. This innovative fusion targets the inherent challenges of high-dimensionality and temporal sequencing posed by wearable sensor data. The proposed QRNN model showcased promising results, achieving an accuracy rate of 98.46% after 20 training epochs, marking a significant advancement in HAR's state-of-the-art. The experimental results showcase the effectiveness and improved accuracy of HAR models with the utilization of quaternion algebra. Overall, this study offers an innovatiove way for wearable technology and human−machine synergy by ensuring an advanced mathematical and statistical framework for perceptual human activity identification.
ISSN:0005-1144
1848-3380