A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application

This study derives the uniqueness of positive solutions to Brézis–Oswald-type problems involving the fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi>&...

Full description

Saved in:
Bibliographic Details
Main Authors: Yun-Ho Kim, In Hyoun Kim
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/412
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839615970830712832
author Yun-Ho Kim
In Hyoun Kim
author_facet Yun-Ho Kim
In Hyoun Kim
author_sort Yun-Ho Kim
collection DOAJ
description This study derives the uniqueness of positive solutions to Brézis–Oswald-type problems involving the fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian operator and discontinuous Kirchhoff-type coefficients. The Brézis–Oswald-type result and Ricceri’s abstract global minimum principle are critical tools in identifying this uniqueness. We consider an eigenvalue problem associated with fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian problems to confirm the existence of a positive solution for our problem without the Kirchhoff coefficient. Moreover, we establish the uniqueness result of the Brézis–Oswald type by exploiting a generalization of the discrete Picone inequality.
format Article
id doaj-art-08a2d30e1ab24db2882d77d1892d41a8
institution Matheson Library
issn 2504-3110
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-08a2d30e1ab24db2882d77d1892d41a82025-07-25T13:23:29ZengMDPI AGFractal and Fractional2504-31102025-06-019741210.3390/fractalfract9070412A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its ApplicationYun-Ho Kim0In Hyoun Kim1Department of Mathematics Education, Sangmyung University, Seoul 03016, Republic of KoreaDepartment of Mathematics, Incheon National University, Incheon 22012, Republic of KoreaThis study derives the uniqueness of positive solutions to Brézis–Oswald-type problems involving the fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian operator and discontinuous Kirchhoff-type coefficients. The Brézis–Oswald-type result and Ricceri’s abstract global minimum principle are critical tools in identifying this uniqueness. We consider an eigenvalue problem associated with fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian problems to confirm the existence of a positive solution for our problem without the Kirchhoff coefficient. Moreover, we establish the uniqueness result of the Brézis–Oswald type by exploiting a generalization of the discrete Picone inequality.https://www.mdpi.com/2504-3110/9/7/412fractional (<i>r</i>, <i>q</i>)-LaplacianKirchhoff-type functionuniquenessglobal minima
spellingShingle Yun-Ho Kim
In Hyoun Kim
A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application
Fractal and Fractional
fractional (<i>r</i>, <i>q</i>)-Laplacian
Kirchhoff-type function
uniqueness
global minima
title A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application
title_full A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application
title_fullStr A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application
title_full_unstemmed A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application
title_short A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application
title_sort brezis oswald type result for the fractional i r i i q i laplacian problems and its application
topic fractional (<i>r</i>, <i>q</i>)-Laplacian
Kirchhoff-type function
uniqueness
global minima
url https://www.mdpi.com/2504-3110/9/7/412
work_keys_str_mv AT yunhokim abrezisoswaldtyperesultforthefractionaliriiqilaplacianproblemsanditsapplication
AT inhyounkim abrezisoswaldtyperesultforthefractionaliriiqilaplacianproblemsanditsapplication
AT yunhokim brezisoswaldtyperesultforthefractionaliriiqilaplacianproblemsanditsapplication
AT inhyounkim brezisoswaldtyperesultforthefractionaliriiqilaplacianproblemsanditsapplication