A Brézis–Oswald-Type Result for the Fractional (<i>r</i>, <i>q</i>)-Laplacian Problems and Its Application
This study derives the uniqueness of positive solutions to Brézis–Oswald-type problems involving the fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi>&...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/9/7/412 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study derives the uniqueness of positive solutions to Brézis–Oswald-type problems involving the fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian operator and discontinuous Kirchhoff-type coefficients. The Brézis–Oswald-type result and Ricceri’s abstract global minimum principle are critical tools in identifying this uniqueness. We consider an eigenvalue problem associated with fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian problems to confirm the existence of a positive solution for our problem without the Kirchhoff coefficient. Moreover, we establish the uniqueness result of the Brézis–Oswald type by exploiting a generalization of the discrete Picone inequality. |
---|---|
ISSN: | 2504-3110 |