Image Visual Quality: Sharpness Evaluation in the Logarithmic Image Processing Framework
In image processing, the acquisition step plays a fundamental role because it determines image quality. The present paper focuses on the issue of blur and suggests ways of assessing contrast. The logic of this work consists in evaluating the sharpness of an image by means of objective measures based...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Big Data and Cognitive Computing |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-2289/9/6/154 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In image processing, the acquisition step plays a fundamental role because it determines image quality. The present paper focuses on the issue of blur and suggests ways of assessing contrast. The logic of this work consists in evaluating the sharpness of an image by means of objective measures based on mathematical, physical, and optical justifications in connection with the human visual system. This is why the Logarithmic Image Processing (LIP) framework was chosen. The sharpness of an image is usually assessed near objects’ boundaries, which encourages the use of gradients, with some major drawbacks. Within the LIP framework, it is possible to overcome such problems using a “contour detector” tool based on the notion of Logarithmic Additive Contrast (LAC). Considering a sequence of images increasingly blurred, we show that the use of LAC enables images to be re-classified in accordance with their defocus level, demonstrating the relevance of the method. The proposed algorithm has been shown to outperform five conventional methods for assessing image sharpness. Moreover, it is the only method that is insensitive to brightness variations. Finally, various application examples are presented, like automatic autofocus control or the comparison of two blur removal algorithms applied to the same image, which particularly concerns the field of Super Resolution (SR) algorithms. Such algorithms multiply (×2, ×3, ×4) the resolution of an image using powerful tools (deep learning, neural networks) while correcting the potential defects (blur, noise) that could be generated by the resolution extension itself. We conclude with the prospects for this work, which should be part of a broader approach to estimating image quality, including sharpness and perceived contrast. |
---|---|
ISSN: | 2504-2289 |