Evaluating the Quality of High-Frequency Pedestrian Commuting Streets: A Data-Driven Approach in Shenzhen
Streets, as critical public space nexuses, require synergistic quality–utilization alignment—where quality without use signifies institutional inefficiency, and use without quality denotes operational ineffectiveness. Focusing on high-frequency pedestrian commuting streets (HFPCSs) that not only cru...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-05-01
|
Series: | Smart Cities |
Subjects: | |
Online Access: | https://www.mdpi.com/2624-6511/8/3/83 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Streets, as critical public space nexuses, require synergistic quality–utilization alignment—where quality without use signifies institutional inefficiency, and use without quality denotes operational ineffectiveness. Focusing on high-frequency pedestrian commuting streets (HFPCSs) that not only crucially mediate metropolitan mobility patterns but also shape citizens’ daily urban experiences and satisfaction, this study proposes a data-driven diagnostic framework for street quality–utilization assessment, integrating multi-source urban big data through a case study of Shenzhen. By integrating multi-source urban big data, we identify HFPCSs using LBS data and develop a multi-dimensional evaluation system that incorporates 1.07 million Points of Interest (POIs) for assessing convenience, utilizes DeepLabv3+ for the semantic segmentation of street view imagery to evaluate comfort, and leverages 15,374 km of road network data for accessibility analysis. The results expose dual mismatches: merely 2.15% of HFPCSs achieve balanced comfort–convenience–accessibility benchmarks, while over 70% of these are clustered in northern districts, exhibiting systematically inferior quality metrics across dimensions. Diagnostic analysis reveals specific planning and spatial configurations contributing to these disparities, informing targeted retrofitting strategies for priority street typologies. This approach establishes a replicable model for megacity street renewal, deploying supply–demand diagnostics to synchronize infrastructure upgrades with pedestrian flow realities. By bridging data insights with human-centric urban improvements, this framework demonstrates how smart city technologies can concretely address the quality–utilization paradox—advancing sustainable urbanism through evidence-based street transformations. |
---|---|
ISSN: | 2624-6511 |