Applications of Building Information Modeling (BIM) and BIM-Related Technologies for Sustainable Risk and Disaster Management in Buildings: A Meta-Analysis (2014–2024)
Sustainable risk and disaster management in the built environment has become a critical research focus amid escalating environmental challenges. Building Information Modeling (BIM) is recognized as a key digital tool for enhancing disaster resilience through simulation, data integration, and collabo...
Sábháilte in:
| Príomhchruthaitheoirí: | , , , |
|---|---|
| Formáid: | Alt |
| Teanga: | Béarla |
| Foilsithe / Cruthaithe: |
MDPI AG
2025-06-01
|
| Sraith: | Buildings |
| Ábhair: | |
| Rochtain ar líne: | https://www.mdpi.com/2075-5309/15/13/2289 |
| Clibeanna: |
Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
|
| Achoimre: | Sustainable risk and disaster management in the built environment has become a critical research focus amid escalating environmental challenges. Building Information Modeling (BIM) is recognized as a key digital tool for enhancing disaster resilience through simulation, data integration, and collaborative management. This study systematically reviews BIM applications in sustainable risk and disaster management from 2014 to 2024, employing the PRISMA framework, literature coding, and network analysis. Five primary research clusters are identified: (a) sustainable construction and life cycle assessment, (b) performance evaluation and implementation, (c) technology integration and digital innovation, (d) Historic Building Modeling (HBIM) and post-disaster reconstruction, and (e) project management and technology adoption. Despite increasing scholarly attention, the field remains dominated by conceptual studies, with limited empirical exploration of emerging technologies such as artificial intelligence (AI). Four key challenges are highlighted: weak foundational integration with structural risk research, technological bottlenecks in AI and digital applications, limited practical implementation, and insufficient linkage between sustainability and risk management. Future trends are expected to focus on achieving Industry 4.0 interoperability, advancing AI-driven intelligent disaster response, and adopting multi-objective optimization strategies balancing resilience, sustainability, and cost-effectiveness. This study provides a comprehensive overview of the field’s evolution and offers insights into strategic directions for future research and practical innovation. |
|---|---|
| ISSN: | 2075-5309 |