The Spatial–Temporal Characteristics of Wave Energy Resource Availability in the China Seas

For coastal nations and regions, wave energy provides a localized energy solution, decreasing dependency on external energy sources and fostering the sustainable development of local economies. Effective wave height occurrence (EWHO) represents the availability of wave energy and is a crucial parame...

Full description

Saved in:
Bibliographic Details
Main Authors: Rui-Zhe Shen, Cheng-Tao Yi, Yu-Nuo Liu, Lei Wang, Kai Wu, Mu-Yu Chen, Chong-Wei Zheng
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/6/1042
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For coastal nations and regions, wave energy provides a localized energy solution, decreasing dependency on external energy sources and fostering the sustainable development of local economies. Effective wave height occurrence (EWHO) represents the availability of wave energy and is a crucial parameter for site selection for optimal wave energy. This paper systematically analyzes the distribution of EWHO in China seas areas using significant wave height (SWH) data in the fifth generation of ECMWF atmospheric reanalysis (ERA5) and key climate indices. Employing methods such as climate statistical analysis, linear regression, significance testing, and trend analysis, the study highlights the temporal and spatial distribution characteristics, variation trends, and correlations with climate indices of EWHO. This research aims to provide technical assistance and decision support for the development of wave energy at sea. The results indicate the following conclusions: (1) The high EWHO in the China seas is predominantly located in northern Nanhai, southern Donghai, and the eastern waters of the Philippine Islands. The EWHO is highest in winter. (2) The growth trend of EWHO is most notable in the sea area east of the line connecting the Ryukyu Islands, Taiwan, and the northeastern Philippines, peaking in spring and being relatively weak in winter. (3) The correlation between NINO3 and EWHO is most significant in Nanhai and the northeastern waters of the Philippines, peaking in February with correlation coefficients ranging from −0.30 to −0.50.
ISSN:2077-1312