SOC Estimation of Lithium-Ion Batteries Utilizing EIS Technology with SHAP–ASO–LightGBM
Accurate State of Charge (SOC) estimation is critical for optimizing the performance and longevity of lithium-ion batteries (LIBs), which are widely used in applications ranging from electric vehicles to renewable energy storage. Traditional SOC estimation methods, such as Coulomb counting and open-...
Salvato in:
| Autori principali: | Panpan Hu, Chun Yin Li, Chi Chung Lee |
|---|---|
| Natura: | Articolo |
| Lingua: | inglese |
| Pubblicazione: |
MDPI AG
2025-07-01
|
| Serie: | Batteries |
| Soggetti: | |
| Accesso online: | https://www.mdpi.com/2313-0105/11/7/272 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
|
Documenti analoghi
Documenti analoghi
-
Interpretable Machine Learning for Serum-Based Metabolomics in Breast Cancer Diagnostics: Insights from Multi-Objective Feature Selection-Driven LightGBM-SHAP Models
di: Emek Guldogan, et al.
Pubblicazione: (2025-06-01) -
LightGBM-Based Human Action Recognition Using Sensors
di: Yinuo Liu, et al.
Pubblicazione: (2025-06-01) -
Optuna-LightGBM : An Optuna hyperparameter optimization framework for the determination of solvent components in acid gas removal unit using LightGBM
di: Rafi Jusar Wishnuwardana, et al.
Pubblicazione: (2025-09-01) -
Population-based colorectal cancer risk prediction using a SHAP-enhanced LightGBM model
di: Guinian Du, et al.
Pubblicazione: (2025-07-01) -
Average Corrosion Rate Prediction Model for Buried Oil and Gas Pipelines Based on SSA-LightGBM
di: Weigang Fu, et al.
Pubblicazione: (2025-01-01)