Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations

In Gen-IV nuclear reactors, structural materials must endure unprecedented levels of neutron irradiation and hydrogen exposure, posing significant challenges for traditional Ni-based alloys. This study evaluates Ni–graphene nanocomposites (NGNCs) as a promising solution, leveraging their inherent ra...

Full description

Saved in:
Bibliographic Details
Main Authors: Tonghe Liu, Xiaoting Yuan, Hai Huang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/13/970
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Gen-IV nuclear reactors, structural materials must endure unprecedented levels of neutron irradiation and hydrogen exposure, posing significant challenges for traditional Ni-based alloys. This study evaluates Ni–graphene nanocomposites (NGNCs) as a promising solution, leveraging their inherent radiation tolerance and hydrogen diffusion suppression. Using molecular dynamics simulations, we investigate how Ni/graphene interfaces influence mechanical properties under combined hydrogen permeation and displacement damage. Key parameters, such as hydrogen concentration, displacement damage level, strain rate, and temperature, are systematically varied to assess their impact on stress–strain behavior (including Young’s modulus and tensile strength), with comparisons to single-crystal nickel. Our findings reveal that NGNCs exhibit distinct mechanical responses characterized by serrated stress–strain curves due to interfacial slip. Hydrogen and irradiation effects are complex: low hydrogen levels can increase Young’s modulus, while higher concentrations and irradiation generally degrade strength, with NGNCs being more affected than single-crystal nickel. Additionally, NGNCs show enhanced thermal stability but increased strain rate sensitivity. These results provide critical insights for designing materials that balance reinforcement with environmental resilience in nuclear applications.
ISSN:2079-4991