Integrated Analysis of Pore and Fracture Networks in Deep Coal Seams: Implications for Enhanced Reservoir Stimulation

This study systematically investigates the pore–fracture architecture of deep coal seams in the JiaTan (JT) block of the Ordos Basin using an integrated suite of advanced techniques, including nuclear magnetic resonance (NMR), high-pressure mercury intrusion, low-temperature nitrogen adsorption, low...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaiqi Leng, Baoshan Guan, Chen Jiang, Weidong Liu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/13/3235
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study systematically investigates the pore–fracture architecture of deep coal seams in the JiaTan (JT) block of the Ordos Basin using an integrated suite of advanced techniques, including nuclear magnetic resonance (NMR), high-pressure mercury intrusion, low-temperature nitrogen adsorption, low-pressure carbon dioxide adsorption, and micro-computed tomography (micro-CT). These complementary methods enable a quantitative assessment of pore structures spanning nano- to microscale dimensions. The results reveal a pore system overwhelmingly dominated by micropores—accounting for more than 98% of the total pore volume—which play a central role in coalbed methane (CBM) storage. Microfractures, although limited in volumetric proportion, markedly enhance permeability by forming critical flow pathways. Together, these features establish a dual-porosity system that governs methane transport and recovery in deep coal reservoirs. The multiscale characterization employed here proves essential for resolving reservoir heterogeneity and designing effective stimulation strategies. Notably, enhancing methane desorption in micropore-rich matrices and improving fracture connectivity are identified as key levers for optimizing deep CBM extraction. These insights offer a valuable foundation for the development of deep coalbed methane (DCBM) resources in the Ordos Basin and similar geological settings.
ISSN:1996-1073