Transmission of 100-Gb/s VSB DFT-Spread DMT Signal in Short-Reach Optical Communication Systems
In this paper, we experimentally demonstrated transmission of a 100-Gb/s discrete Fourier transform (DFT)-spread 32-quadrature amplitude modulation (QAM) discrete multitone (DMT) signal in an intensity-modulation/direct-detection system utilizing a direct-modulated laser. We find that DFT-spread can...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2015-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/7289333/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we experimentally demonstrated transmission of a 100-Gb/s discrete Fourier transform (DFT)-spread 32-quadrature amplitude modulation (QAM) discrete multitone (DMT) signal in an intensity-modulation/direct-detection system utilizing a direct-modulated laser. We find that DFT-spread cannot only reduce the peak-to-average power ratio but also improve the robustness to high-frequency power attenuation and narrow-band interference in the high-speed short-reach optical communication systems. Vestigial sideband (VSB) enabled by a narrow-bandwidth tunable optical filter can be adopted to resist the power fading effect induced by the fiber chromatic dispersion after direct detection. The measured bit error ratio (BER) of 100-Gb/s VSB DFT-spread DMT signal after 20-km large effective area fiber is less than the hard-decision forward-error-correction (HD-FEC) limitation of <inline-formula> <tex-math notation="LaTeX">$3.8 \times 10^{-3}$</tex-math></inline-formula>. |
---|---|
ISSN: | 1943-0655 |