Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price Prediction

This study explores the application of natural language processing (NLP) techniques in financial time series forecasting, specifically in predicting stock prices. Historical stock price data and textual data from financial news articles and social media sources were collected, and TextBlob was used...

Full description

Saved in:
Bibliographic Details
Main Authors: Albert Ntumba Nkongolo, Yae Olatoundji Gaba, Kafunda Katalay Pierre, Esther Matendo Mabela, Ben Mbuyi Mpumbu
Format: Article
Language:English
Published: Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap 2025-06-01
Series:Journal of Innovation Information Technology and Application
Subjects:
Online Access:https://ejournal.pnc.ac.id/index.php/jinita/article/view/2290
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839637186536800256
author Albert Ntumba Nkongolo
Yae Olatoundji Gaba
Kafunda Katalay Pierre
Esther Matendo Mabela
Ben Mbuyi Mpumbu
author_facet Albert Ntumba Nkongolo
Yae Olatoundji Gaba
Kafunda Katalay Pierre
Esther Matendo Mabela
Ben Mbuyi Mpumbu
author_sort Albert Ntumba Nkongolo
collection DOAJ
description This study explores the application of natural language processing (NLP) techniques in financial time series forecasting, specifically in predicting stock prices. Historical stock price data and textual data from financial news articles and social media sources were collected, and TextBlob was used to obtain sentiment indices from the textual data. A hybrid model combining NLP techniques with LSTM (Long Short-Term Memory) neural networks was developed, and the methodology involved preprocessing and analyzing textual data using sentiment analysis with TextBlob and integrating the sentiment indices with historical stock price data for forecasting with LSTM. The LSTM model achieved a performance of 89.6 percent precision and outperformed traditional time series forecasting models in terms of accuracy and reliability. The results demonstrate that incorporating sentiment indices obtained through NLP significantly enhances the predictive performance of stock price forecasting models, and the study highlights the potential of NLP techniques, particularly sentiment analysis with TextBlob, in conjunction with LSTM neural networks, to improve the accuracy of financial time series forecasting, specifically in predicting stock prices.   Studi ini mengeksplorasi penerapan teknik pemrosesan bahasa alami (Natural Language Processing/NLP) dalam peramalan deret waktu keuangan, khususnya untuk memprediksi harga saham. Data harga saham historis dan data tekstual dari artikel berita keuangan serta sumber media sosial dikumpulkan, dan TextBlob digunakan untuk memperoleh indeks sentimen dari data tekstual tersebut. Sebuah model hibrida yang menggabungkan teknik NLP dengan jaringan saraf LSTM (Long Short-Term Memory) dikembangkan, dan metodologinya melibatkan praproses dan analisis data tekstual menggunakan analisis sentimen dengan TextBlob, serta integrasi indeks sentimen dengan data harga saham historis untuk peramalan menggunakan LSTM. Model LSTM ini mencapai kinerja dengan tingkat ketepatan (precision) sebesar 89,6 persen dan mengungguli model peramalan deret waktu tradisional dalam hal akurasi dan keandalan. Hasilnya menunjukkan bahwa penggabungan indeks sentimen yang diperoleh melalui NLP secara signifikan meningkatkan kinerja prediktif model peramalan harga saham, dan studi ini menekankan potensi teknik NLP, khususnya analisis sentimen dengan TextBlob, dalam kombinasi dengan jaringan saraf LSTM, untuk meningkatkan akurasi peramalan deret waktu keuangan, khususnya dalam memprediksi harga saham.
format Article
id doaj-art-0147efe1282c49a983e53556c60c35d6
institution Matheson Library
issn 2716-0858
2715-9248
language English
publishDate 2025-06-01
publisher Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap
record_format Article
series Journal of Innovation Information Technology and Application
spelling doaj-art-0147efe1282c49a983e53556c60c35d62025-07-07T06:45:24ZengPusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri CilacapJournal of Innovation Information Technology and Application2716-08582715-92482025-06-0171192510.35970/jinita.v7i1.22901432Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price PredictionAlbert Ntumba Nkongolo0Yae Olatoundji Gaba1Kafunda Katalay Pierre2Esther Matendo Mabela3Ben Mbuyi Mpumbu4Department of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa, Kinshasa, DR CongoInstitute of Mathematics and Physical Sciences (Benin)Department of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa, Kinshasa, DR CongoDepartment of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa, Kinshasa, DR CongoDepartment of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa, Kinshasa, DR CongoThis study explores the application of natural language processing (NLP) techniques in financial time series forecasting, specifically in predicting stock prices. Historical stock price data and textual data from financial news articles and social media sources were collected, and TextBlob was used to obtain sentiment indices from the textual data. A hybrid model combining NLP techniques with LSTM (Long Short-Term Memory) neural networks was developed, and the methodology involved preprocessing and analyzing textual data using sentiment analysis with TextBlob and integrating the sentiment indices with historical stock price data for forecasting with LSTM. The LSTM model achieved a performance of 89.6 percent precision and outperformed traditional time series forecasting models in terms of accuracy and reliability. The results demonstrate that incorporating sentiment indices obtained through NLP significantly enhances the predictive performance of stock price forecasting models, and the study highlights the potential of NLP techniques, particularly sentiment analysis with TextBlob, in conjunction with LSTM neural networks, to improve the accuracy of financial time series forecasting, specifically in predicting stock prices.   Studi ini mengeksplorasi penerapan teknik pemrosesan bahasa alami (Natural Language Processing/NLP) dalam peramalan deret waktu keuangan, khususnya untuk memprediksi harga saham. Data harga saham historis dan data tekstual dari artikel berita keuangan serta sumber media sosial dikumpulkan, dan TextBlob digunakan untuk memperoleh indeks sentimen dari data tekstual tersebut. Sebuah model hibrida yang menggabungkan teknik NLP dengan jaringan saraf LSTM (Long Short-Term Memory) dikembangkan, dan metodologinya melibatkan praproses dan analisis data tekstual menggunakan analisis sentimen dengan TextBlob, serta integrasi indeks sentimen dengan data harga saham historis untuk peramalan menggunakan LSTM. Model LSTM ini mencapai kinerja dengan tingkat ketepatan (precision) sebesar 89,6 persen dan mengungguli model peramalan deret waktu tradisional dalam hal akurasi dan keandalan. Hasilnya menunjukkan bahwa penggabungan indeks sentimen yang diperoleh melalui NLP secara signifikan meningkatkan kinerja prediktif model peramalan harga saham, dan studi ini menekankan potensi teknik NLP, khususnya analisis sentimen dengan TextBlob, dalam kombinasi dengan jaringan saraf LSTM, untuk meningkatkan akurasi peramalan deret waktu keuangan, khususnya dalam memprediksi harga saham.https://ejournal.pnc.ac.id/index.php/jinita/article/view/2290time series forecasting nlpsentiment analysis machine learningstock price prediction
spellingShingle Albert Ntumba Nkongolo
Yae Olatoundji Gaba
Kafunda Katalay Pierre
Esther Matendo Mabela
Ben Mbuyi Mpumbu
Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price Prediction
Journal of Innovation Information Technology and Application
time series forecasting
nlp
sentiment analysis
machine learning
stock price prediction
title Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price Prediction
title_full Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price Prediction
title_fullStr Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price Prediction
title_full_unstemmed Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price Prediction
title_short Natural Language Processing-Based Financial Time Series Forecasting: Utilizing Sentiment Analysis for Improved Stock Price Prediction
title_sort natural language processing based financial time series forecasting utilizing sentiment analysis for improved stock price prediction
topic time series forecasting
nlp
sentiment analysis
machine learning
stock price prediction
url https://ejournal.pnc.ac.id/index.php/jinita/article/view/2290
work_keys_str_mv AT albertntumbankongolo naturallanguageprocessingbasedfinancialtimeseriesforecastingutilizingsentimentanalysisforimprovedstockpriceprediction
AT yaeolatoundjigaba naturallanguageprocessingbasedfinancialtimeseriesforecastingutilizingsentimentanalysisforimprovedstockpriceprediction
AT kafundakatalaypierre naturallanguageprocessingbasedfinancialtimeseriesforecastingutilizingsentimentanalysisforimprovedstockpriceprediction
AT esthermatendomabela naturallanguageprocessingbasedfinancialtimeseriesforecastingutilizingsentimentanalysisforimprovedstockpriceprediction
AT benmbuyimpumbu naturallanguageprocessingbasedfinancialtimeseriesforecastingutilizingsentimentanalysisforimprovedstockpriceprediction