Nets, puzzles, and postmen : An exploration of mathematical connections /

What do railways, mingling at parties, mazes, and the internet all have in common? All are networks - people or places or things that connect to one another. Peter Higgins shows that these phenomena - and many more - are underpinned by the same deep mathematical structure, and how this understanding...

Full description

Saved in:
Bibliographic Details
Main Author: Higgins, Peter M.
Format: Book
Language:English
Published: Oxford ; New York : Oxford University Press, 2007.
Subjects:
Online Access:www.oup.com
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000007a 4500
003 PUMLC
005 20240602104031.0
008 190701b ||||| |||| 00| 0 eng d
999 |c 84824  |d 84824 
010 |a 2008295526 
020 |a 9780199218424  |q (hkb) 
040 |a DLC  |b eng  |c PUMLC  |d PUMLC 
082 0 0 |2 22  |a 510  |b H636 
100 1 |a Higgins, Peter M.  |9 3889 
245 |a Nets, puzzles, and postmen :   |b An exploration of mathematical connections /  |c Peter M. Higgins. 
260 |a Oxford ;  |a New York :  |b Oxford University Press,  |c 2007. 
300 |a viii, 247 p. :  |b ill. ;  |c 23 cm. 
504 |a Includes bibliographical references (p. [236]-241) and index. 
520 |a What do railways, mingling at parties, mazes, and the internet all have in common? All are networks - people or places or things that connect to one another. Peter Higgins shows that these phenomena - and many more - are underpinned by the same deep mathematical structure, and how this understanding gives us remarkable new insights into the world. - ;What do road and railway systems, electrical circuits, mingling at parties, mazes, family trees, and the internet all have in common?. All are networks - either people or places or things that relate and connect to one another. Only relatively rec. The mathematics of networks form the basis of many fascinating puzzles and problems. This text shows how such puzzles, as well as many real-world phenomena, are underpinned by the same deep mathematical structure. 
650 0 |a Mathematical recreations.  |9 1542 
650 0 |a Nets (Mathematics).  |9 3890 
650 0 |a  Mathematics  |v Popular works.  |9 3891 
856 |u www.oup.com 
942 |2 ddc  |c BK  |e 22  |h 510  |i H636  |n 0  |0 1 
952 |0 0  |1 0  |2 ddc  |4 0  |7 0  |8 MN  |a ML015  |b ML015  |c ML015  |d 2019-07-01  |e Donation by John Thomas  |l 1  |o 510 H636  |p 112355  |r 2023-04-11 00:00:00  |s 2023-03-09  |t 1  |w 2019-07-01  |y BK