खोज परिणाम - Kayode Ayinde

  • प्रदर्शित 1 - 4 परिणाम 4
परिणाम को परिष्कृत करें
  1. 1

    A Modified Two Parameter Estimator with Different Forms of Biasing Parameters in the Linear Regression Model द्वारा Abiola T. Owolabi, Kayode Ayinde, Olusegun O. Alabi

    प्रकाशित 2022-12-01

    Despite its common usage in estimating the linear regression model parameters, the ordinary least squares estimator often suffers a breakdown when two or more predictor variables are strongly correlated. This study proposes an alternative estimator to the OLS and other existing ridge-type estimator...

    पूर्ण विवरण

    पूर्ण पाठ प्राप्त करें
    लेख
  2. 2

    M Robust Weighted Ridge Estimator in Linear Regression Model द्वारा Taiwo Stephen Fayose, Kayode Ayinde, Olatayo Olusegun Alabi

    प्रकाशित 2023-08-01

    Correlated regressors are a major threat to the performance of the conventional ordinary least squares (OLS) estimator. The ridge estimator provides more stable estimates in this circumstance. However, both OLS and Ridge estimators are sensitive to outlying observations. In previous studies, the rob...

    पूर्ण विवरण

    पूर्ण पाठ प्राप्त करें
    लेख
  3. 3

    On the biased Two-Parameter Estimator to Combat Multicollinearity in Linear Regression Model द्वारा Janet Iyabo Idowu, Olasunkanmi James Oladapo, Abiola Timothy Owolabi, Kayode Ayinde

    प्रकाशित 2022-12-01

    The most popularly used estimator to estimate the regression parameters in the linear regression model is the ordinary least-squares (OLS). The existence of multicollinearity in the model renders OLS inefficient. To overcome the multicollinearity problem, a new two-parameter estimator, a biased two...

    पूर्ण विवरण

    पूर्ण पाठ प्राप्त करें
    लेख
  4. 4

    Robust weighted ridge regression based on S – estimator द्वारा Taiwo Stephen Fayose, Kayode Ayinde, Olatayo Olusegun Alabi, Abimbola Hamidu Bello

    प्रकाशित 2023-12-01

    Ordinary least squares (OLS) estimator performance is seriously threatened by correlated regressors often called multicollinearity. Multicollinearity is a situation when there is strong relationship between any two exogenous variables. In this case, the ridge estimator offers more reliable estimatio...

    पूर्ण विवरण

    पूर्ण पाठ प्राप्त करें
    लेख